
A short introduction to Codac

SWIM
30th June 2025, Rennes, France

Tutorial proposed by Fabrice Le Bars, Maël Godard, Damien Massé, Simon Rohou
ENSTA, Lab-STICC, Brest, France

https://codac.io/v2/tuto/cp_robotics

https://codac.io/v2/tuto/cp_robotics
https://www.ensta-bretagne.fr/robex/
https://www.ensta-bretagne.fr/sperob/
https://www.ensta-bretagne.fr/rob/gth/


Codac in a nutshell



Domains (wrappers)

– for reals x ∈ R, x ∈ Rn: intervals [x ] and boxes [x]
– for trajectories x(·) : R → R: tubes [x ](·)

– for subsets X ⊂ Rn: thicksets X ∈ [X] = [X−,X+]

– etc.

Illustration of a thickset (right-hand side)
for enclosing and uncertain red set (left-hand side)

■ Thick set inversion
Desrochers, Jaulin. Artificial Intelligence. Volume 249, Issue C, Pages 1-18, 2017

2/14



Domains (wrappers)

– for reals x ∈ R, x ∈ Rn: intervals [x ] and boxes [x]
– for trajectories x(·) : R → R: tubes [x ](·)
– for subsets X ⊂ Rn: thicksets X ∈ [X] = [X−,X+]

– etc.

Illustration of a thickset (right-hand side)
for enclosing and uncertain red set (left-hand side)

■ Thick set inversion
Desrochers, Jaulin. Artificial Intelligence. Volume 249, Issue C, Pages 1-18, 2017

2/14



Domains (wrappers)

– for reals x ∈ R, x ∈ Rn: intervals [x ] and boxes [x]
– for trajectories x(·) : R → R: tubes [x ](·)
– for subsets X ⊂ Rn: thicksets X ∈ [X] = [X−,X+]

– etc.

Illustration of a thickset (right-hand side)
for enclosing and uncertain red set (left-hand side)

■ Thick set inversion
Desrochers, Jaulin. Artificial Intelligence. Volume 249, Issue C, Pages 1-18, 2017

2/14



Example of mixing tubes and
thicksets

■ Computing a Guaranteed Approximation of the Zone Explored by a Robot.
Desrochers, Jaulin. IEEE Trans. on Automatic Control. Volume 62, Issue 1., 2017
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Catalog Of Domains And
Contractors

Several types of domains:

– Interval (mainly from the GAOL library)
– IntervalVector, IntervalMatrix (using Eigen templates)
– SlicedTube<T>..., Slice<T>...
– Ellipsoid, Paving, Thickset, ...

Contractors for various constraints:

– non-linear constraints f(x) = 0 (involving centered form)
– geometric constraints: distance, polar equation, no-cross, . . .
– differential equations: ẋ = f(x), ẋ = Ax + Bu,

∫∫
– time uncertainties: y = x(t), with t ∈ [t]
– delays: x(t) = y(t − τ)

– . . .
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Domains for trajectories: tubes

·

[x](·)

t0

tfx
∗ (·
)

x+(·)

x−(·)

Example of scalar tube: interval of two trajectories
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Domains for trajectories: tubes

δ
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The library is open source and available:

– in Python, C++, Matlab

– on Linux, Windows, MacOS systems

– from official packages:
Python package: pip install codac
Debian in progress..: sudo apt install libcodac

http://www.codac.io
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Constraint programming



SLAM: Simultaneous
Localization And Mapping
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Formalization

SLAM: Simultaneous Localization And Mapping.
Classically, we have:

x(0) = 0 (initial state)
ẋ(t) = f

(
x(t),u(t)

)
(evolution)

yi = g
(
x(ti),bj

)
(observations)

With:

– x: state vector (position, heading, . . . )
– u: input vector (command)
– f: evolution function

– g : observation function (scalar, distance equation)
– yi : scalar measurements (at ti) (distance values)
– bj : unknown position of a landmark
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Involved variables and domains

Variables:

– reals: yi ∈ R
– vectors: bj ∈ R2

– trajectories: x(·) : R → Rn

Domains (envelopes) of the variables:

– intervals: [yi ] ∈ IR
– boxes: [bj ] ∈ IR2

– tubes: [x](·) : R → IRn
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Tubes: domains for trajectories

Tube [x ](·): interval of trajectories [x−(·), x+(·)]
Tube [x ](·): such that ∀t ∈ R, x−(t) ⩽ x+(t)

·

[x](·)

t0

tfx
∗ (·
)

x+(·)

x−(·)

Tube [x ](·) enclosing an uncertain trajectory x(·)
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Decomposition of the problem

System:{
ẋ(·) = f

(
x(·)

)
yi = g

(
x1,2(ti),bj

)

v(·) and pi are intermediate variables

Note: some symbolic solver could break down such problem automatically.

Elementary constraints:

– v(·) = f
(
x(·)

)
→ algebraic constraint → Cf

(
[x](·), [v](·)

)
– ẋ(·) = v(·) → derivative constraint → Cderiv

(
[x](·), [v](·)

)
– pi = x1,2(ti) → evaluation constraint → Ceval

(
[ti ], [pi ], [x1,2](·)

)
– yi = g

(
pi ,bj

)
→ distance constraint → Cdist

(
[pi ], [bj ], [yi ]

)
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– ẋ(·) = v(·) → derivative constraint → Cderiv

(
[x](·), [v](·)

)
– pi = x1,2(ti) → evaluation constraint → Ceval

(
[ti ], [pi ], [x1,2](·)

)
– yi = g

(
pi ,bj

)
→ distance constraint → Cdist

(
[pi ], [bj ], [yi ]

)
12/14



Decomposition of the problem

System:{
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Derivative constraint

Differential constraint:

– ẋ(·) = v(·)

– one trajectory and its
derivative

Contractor programming:

– Cderiv
(
[x](·), [v](·)

)
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SLAM results
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